
Knapsack Backtracking Recursive

February 16, 2026

[1]: from random import randint

capacity = 10
items are (weight, value)
items = [(8,13),(3,7),(5,10),(5,10),(2,1),(2,1),(2,1)]

capacity = 23
items = [(randint(5,20),randint(5,20)) for _ in range(200)]

[4]: # to help you write recursive functions, always plan out
SUPER explicitly what the inputs and outputs are
input:
items_left: list of remaining items to choose from
(at the start, all items are remaining)
capacity_left: remaining capacity
output:
the best solution (as a list of 2-tuples) using just
"items_left" with capacity <= "capacity_left"

def solve(items_left, capacity_left, prefix=""):
return the set of items in the best solution
print(f"{prefix}just got called with",(items_left, capacity_left))

#if not items_left:
if len(items_left) == 0:

print(f"{prefix}| about to return [] with total value 0")
return []

item = (weight, value)
first_item_weight = items_left[0][0]

sol_without_item = solve(items_left[1:], capacity_left, prefix+"| ")

if we have room for the first item, add it and recursively solve
if first_item_weight <= capacity_left:

find the best solution that USES the first item
sol_with_item = [items_left[0]] + solve(items_left[1:],␣

↪capacity_left-first_item_weight, prefix+"| ")

1

else:
if not, then only possible solution is exclusing the item
prune
#print("about to return", sol_without_item)
return sol_without_item

compare sol_with and sol_without, and return the best
score_with = sum(item[1] for item in sol_with_item)
score_without = sum(item[1] for item in sol_without_item)

if score_with > score_without:
print(f"{prefix}about to return {sol_with_item} with total value␣

↪{score_with}")
return sol_with_item

print(f"{prefix}about to return {sol_without_item} with total value␣
↪{score_without}")

return sol_without_item

items = [(8,13),(3,7),(5,10)]

solve([(8,13),(3,7),(5,10)], 10)
--> solve([(3,7),(5,10)], 10) # best solution without (8,13)

--> solve([(5,10)], 10)
solve([(5,10)], 7)

vs
solve([(3,7),(5,10)], 2) # best solution with (8,13)

[5]: solve([(8,13),(3,7),(5,10)], 10)

just got called with ([(8, 13), (3, 7), (5, 10)], 10)
| just got called with ([(3, 7), (5, 10)], 10)
| | just got called with ([(5, 10)], 10)
| | | just got called with ([], 10)
| | | | about to return [] with total value 0
| | | just got called with ([], 5)
| | | | about to return [] with total value 0
| | about to return [(5, 10)] with total value 10
| | just got called with ([(5, 10)], 7)
| | | just got called with ([], 7)
| | | | about to return [] with total value 0
| | | just got called with ([], 2)
| | | | about to return [] with total value 0
| | about to return [(5, 10)] with total value 10
| about to return [(3, 7), (5, 10)] with total value 17
| just got called with ([(3, 7), (5, 10)], 2)
| | just got called with ([(5, 10)], 2)
| | | just got called with ([], 2)
| | | | about to return [] with total value 0

2

about to return [(3, 7), (5, 10)] with total value 17

[5]: [(3, 7), (5, 10)]

[]:

[]:

[]:

[]:

3

