Knapsack Backtracking Recursive

February 16, 2026

[1]: from random import randint

capacity = 10
items are (weight, wvalue)
items = [(8,13),(3,7),(5,10),(5,10),(2,1),(2,1),(2,1)]

capacity = 23

items = [(randint(5,20),randint(5,20)) for in range(200)]

[4]: to help you write recursive functions, always plan out
SUPER ezplicitly what the inputs and outputs are
tnput:

1tems_left: list of remaining items to choose from

capacity_left: remaining capacity
output:
the best solutton (as a list of 2-tuples) using just

= O

#
#
#
#
(at the start, all items are remaining)
#
#
#
#

"items_left" with capacity <= "capactity_left"
def solve(items_left, capacity_left, prefix=""):
return the set of ttems in the best solution
print (f"{prefix}just got called with", (items_left, capacity_left))

#i1f not items_left:

if len(items_left) ==
print(f"{prefix}| about to return [] with total value 0O")
return []

item = (weight, value)
first_item_weight = items_left[0] [0]

sol_without_item = solve(items_left[1:], capacity_left, prefix+"| ")

1f we have room for the first item, add <t and recursively solve
if first_item_weight <= capacity_left:
find the best solution that USES the first item
sol_with_item = [items_left[0]] + solve(items_left[1:],.
~capacity_left-first_item_weight, prefix+"| ")

[5]:

else:
1f not, then only possible solution ts exclusing the item
prune
#print ("about to return', sol_without_item)
return sol_without_item

compare sol_with and sol_without, and return the best
score_with = sum(item[1] for item in sol_with_item)
score_without = sum(item[1] for item in sol_without_item)

if score_with > score_without:
print (f"{prefix}about to return {sol_with_item} with total value
~{score_with}")
return sol_with_item
print (f"{prefix}about to return {sol_without_item} with total value
<{score_without}")
return sol_without_item

items = [(8,13),(3,7),(5,10)]

solve([(8,13),(3,7),(5,10)], 10)
--> solve([(3,7),(5,10)], 10) # best solution without (8,13)
--> solve([(5,10)], 10)
solve([(5,10)1, 7)
Vs
solve([(3,7),(5,10)], 2) # best solution with (8,13)

solve([(8,13),(3,7),(5,10)], 10)

ust got called with ([(8, 13), (3, 7), (5, 10)], 10)
just got called with ([(3, 7), (5, 10)], 10)
| just got called with ([(5, 10)], 10)
I | just got called with ([]1, 10)
I | | about to return [] with total value O
I | just got called with ([], 5)
| | | about to return [] with total value 0
| about to return [(5, 10)] with total value 10
| just got called with ([(5, 10)]1, 7)
| | just got called with ([1, 7)
| | | about to return [] with total value O
| | just got called with ([], 2)
| | | about to return [] with total value O
| about to return [(5, 10)] with total value 10
about to return [(3, 7), (5, 10)] with total value 17
just got called with ([(3, 7), (5, 10)], 2)
| just got called with ([(5, 10)], 2)
| | just got called with ([], 2)

J
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| | | | about to return [] with total value O

[5]:

[1:

[1:

[]1:

[]1:

about to return [(3, 7),

(@, M,

(5, 10)]

(5, 10)] with total value 17

